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Steady-State Solutions of Discrete-Velocity
Boltzmann Systems in Restricted Flow Regions

HOWARD E. CONNER

Mathematics Research Center Report 72-2
Mathematics and Information Sciences Division

Abstract: The existence of steady-state solutions is established for discrete-
velocity Boltzmann systems in a restricted flow region. The principal result states that
such solutions exist and are positive provided that the boundary scattering operator does
not distort the associated kinetic equilibrium solutions too much. The steady-state solu-
tions are represented as perturbations of kinetic equilibrium solutions.

I. INTRODUCTION

To develop a discrete-velocity Boltzmann model, the classical one-particle distribution function
p(t,x,v), with spatial coordinate x restricted to a three-dimensional flow region £ with boundary I, and
with unrestricted velocity coordinate v, is replaced by n one-particle velocity-type distribution functions
pr(t,x), 1 <k < n, for n discrete-velocity types vg, 1 <k <n. The classical integrodifferential equa-
tion for determining p(¢,x,v) with mixed initial-boundary conditions is then replaced by a first-order
symmetric hyperbolic quasi-linear system for determining px(¢,x), 1 <k < n, of the general form:

-Z%‘ pi(t,x) + % - V. pi(t,x) =Br(p,p), t>0, x€Q,1<k<n,

By(p.p) =Z{Vjsz A;'Csz PP — Ve Akebrpe)s
IR

with the initial condition
pr0.x)=fr(x), x€Q,1<k<n,

and a boundary condition of the form

) Note: Dr. Conner holds joint appointments at the NRL Mathematics Research Center and the University of
Wisconsin. This work was partially supported by the U.S. Army under Contract No. DA-31-124-ARO-D-462.

NRL Problem B01-11, Project RR 003-02-41-6153. This is a final report on one phase of a continuing NRL
Problem. Manuscript submitted March 8, 1972.
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2 HOWARD E. CONNER
' I3
vk« n () pr(2,x) = Z Mx(x) v/ - n@)\p;(t,x), t>0, x€ET,
Jj

for those values of k for which vk « n(x) <0. ( Z:' denotes a summation over those values of j for which
7

vj *n(x) > 0, where n(x) is the unit exterior vector to 2 at x on the boundary I'.) The numbers vj,

A]’-Zk, the vectors vk, and the functions Hj,k, fi,» 1 <j, k, < n, are given data for the model.

In this report, we shall develop some results on the steady-state solutions of discrete-velocity
Boltzmann models. These results are for application in a companion report on the time-dependent solu-
tions of such models. However, the methods used in the two studies are so different that each is sep-
arately reported.

In a classical work on the spatially homogeneous Boltzmann equation, T. Carleman has a result on
the global existence of time-dependent solutions of a general discrete-velocity, spatially homogeneous,
one-dimensional model, (1; p. 100). Later, in his collected works on the kinetic theory of a gas 2;
appendix), Carleman discussed a simple two-state, one-dimensional, spatially dependent unrestricted
model, which is now referred to as Carleman’s model. LI Kolodner proved the global existence of
positive solutions of Carleman’s model and discussed how his methods of proof could be used to treat
more general forms of the collision operator (3). Using a different method, we have proved the global
existence of positive solutions of one-dimensional, unrestricted, discrete-velocity models with special
quadratic collision operators (4).

In the area of applications, J.E. Broadwell has used the method of discrete velocities to describe
the structure of a shock wave in a gas in which the molecules move in only six directions and at con-
stant speeds (5) and to study the problem of shear flow (6).

A discussion of the appropriate boundary conditions for the classical Boltzmann equation can be
found in either the book, Rarefied Gas Dynamics, by M.N. Kogin (7) or the book, Mathematical
Methods in Kinetic Theory, by C. Cercignani (8). The book by Cercignani contains some results
(Ch. VI, Sec. 1 through 5) on the solution of the steady-state restricted flow problem for the lineariza-
tion of the classical Boltzmann equation with respect to a Maxwellian steady-state solution. Section 5
of Ch. VI also contains a summary of the work by Y. Pao on the steady-state solutions of the one-
dimensional linear and weakly nonlinear flow between infinite parallel plates (9). J.P. Guirard has
published an extensive examination of the solutions of restricted flow problems for the linearization of
the classical Boltzmann equation with respect to a Maxwellian steady-state solution (10).

II. PRELIMINARY NOTATION

We shall assume that the following data are given:

Bounded flow region 2 C R3 with boundary I and unit exterior vector n(x) at x €T (2.1a)
Velocity types v €R3 — {0}, forall 1 <k <n, (2.1b)
Collision rates vjx = Vgj ER,,foralll <j,k<n, .1¢)
Collision scattering laws A]’-zk €R,,forall1 <j,k,2<n, | 2.1d)
Boundary scattering laws l'l]-k(x) ER,,foralll <j k<n, (2.1e)

and x € T for which vk - n(x) < 0 and v/ * n(x) > 0.
For any set E and for x =R or R”, we shall use

F(E,X) to denote the collection of mappings from E to X. (2.2a)
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C’(E,X) to denote those mappings from E to X which are r-times continuously (2.2b)
differentiable over E. ’

C(E,X) to denote the collection of bounded and continuous mappings from E to X. (2.2¢)
For a given set of velocity types {vk, 1 <k < n}, we define the mapping

S: CL(Q,R") > C(LRM) : f > Sf,

M) =(*-VR), 1<k<n x€Q. 2.3)

For a given scattering rate v and collision scattering law A, we shall define the (nonlinear) collision
operator B and state some of its intrinsic properties:

B:C(Q,R") > C(Q,R"): £ > B(£,%) (2.4)

BEDK = ) Blm fekm,
2,m

Bl E‘%v;;,,,(A’,fm + Ak, —6(k,!2)i A - 8(k,m)Zn; A,’;,z> 1<k ,m<n
1= =
B, =Bk,; Bfn >0, 0and m # £, (24a,b)
BY, <0, 00rm=k, D Bin=1, (2.4¢,d)
em
D Bim=1, 1<gms<n (2.4¢)
k

For a given set of velocity types { % : 1 <k <n} and flow region €, we shall define the various
emitting, impinging, and tangent parts of I'.
Let n(x) be the unit exterior vector to QatxonT. Forl1 <k <n

s

Ire(k) ={x €T:vk -n(x) <ol (2.53)
Tik) ={x € :v* - n(x) > 0}. (2.5b)
(k) ={x €T :v¥ +n(x) =0} (2.5¢)
QF(k) = Q uTek) U Tik). (2.5d)

We shall introduce some special notation for various collections of n-tuples of functions f = (fi, ..., f,),
of which each fi has a distinct domain of definition.

CQ* R ={f=(f1,.... ) : f ECQ*(K),R), 1 <k <n}. (2.62)

GITITSSYTIINN



4 HOWARD E. CONNER
Ce,R") ={f=(f1,....fa) : fc € C(CE(K),R), 1 <k < n}. (2.6b)
C(TL,R") =(f = (1, ....fn) : fk € C(T(K),R), 1 <k <n}. (2:6¢)

For a given boundary scattering law II, we can construct the boundary scattering operator R. We
shall assume that the boundary scattering law IT is such that R has certain useful properties.

R:C(Ti,R") > C(I'¢,R"): f > Rf X))

R =) TG +nG K -nGI 7V fx),  x € FeQR). (2.73)
7

' .
(Z denotes a summation over those values of j for which v/ » n(x) > 0.) (2.7b)
i -

R is a positivity preserving (linear) operator. 2.7¢)

If the boundary scattering law II is such that

Z Mjx(x) = 1, then Z vk« n(x) fr(x) = 0.
k k

For any f € C(Q*, R™), we shall now define the restrictions of f to the emitting and impinging
parts of I,

Suppose that f € C(Q*, R™) so that f; € C(Q*(k),R), 1 <k <n. 28
E:C(Q*,R™) » C(T'e, R"), (2.8a)

= € <k<n.
Ef) fkll"e(k) over "é(k), 1 <k <n

I1:C(Q%,R") - C(I'i,R"), (2.8b)
UF) =fk| pigy OV Tik), 1 <k<n.
Before completing this section, we want to introduce some more notation.
Suppose fand g € C(Q2*, R?): (2.92)
f=g over Q* is an abbreviation for fi = gx over Q¥(k), 1 <k <n.
Suppose f and g € C(I'¢, R") or C(', R™): (2.9b)

f =g over I'¢ or I'M is an abbreviation for fi = g over I'é(k) or Ti(k), 1 <k <n.
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. REFORMULATION

Using the notation and the definitions of Sec. II, we shall express the problem of steady-state
solutions in the form:

Sg = B(q, q) over Q2. (3.1a)
Eq = RIq over I'é. (3.1b)

The construction of B shows that
B(cl,cl)=¢c?B(1,1)=0, 1=(1,...,1), cER. 3.2)

Consequently, for any ¢ > 0, cl is a positive solution of 3.1a. If 1 satisfies 3.1b, then {cl; ¢ > 0}
is a one-parameter family of steady-state solutions which can be used to order-bound the class of non-
negative data for the time-dependent problem; i.e., to each fin C(2, R?) there corresponds a canda c

such that ¢l < fx <cl. In general, 1 will not satisfy 3.1b.
The boundary scattering operator R is called kinetically active (passive) if

kgr =RI1 - EIl +0(=0) over I'®. (3.3)

Assuming that R is kinetically active, we shall look for a steady-state solution of 3.1 in the form

q=cl +g, (34)
so that g is to be determined as a solution of
Sg=2c¢B(l,g) + B(g.g), over Q, (3.52)
Eg=RIg+8& over I'¢, (3.5b)
§=ckp €CIE,R"), ¢c>0. (3.5¢)

For convenience of notation, we shall define the linear collision operator:
L:C(Q*,R") » C(Q*,R1) . f~> Lf =2B(1,f),
(3.6)

n n
W =2) Lpf Lg=2) B, 1<jk<n
=1 e=1

At this stage it is worthwhile to exploit a certain positivity property (2; Lemma 1) which applies
to both B and L. Therefore, for an arbitrary diagonal positive operator

D:C(Q*,R") > C(Q*,R"):f > Df
, 3.7
Of ) =drfx, dp>0, 1<k<n,

we have transformed the original problem 3.1 into finding a solution g of

ITITSSYIIND



6 HOWARD E. CONNER
S +D)g=clg+Dg+B(g,g) over £, (3.8a)
Eg=RIg+5§ over I'e, (3.8b)
for arbitrary & in C(I'¢,R"). If g is a solution of 3.8, if I" is an active boundary, and if § is chosen to
be of the form 3.5c, then ¢ = ¢l + g is the solution of 3.1.
The next step is to reformulate 3.8 in a form which treats the relationship between g and § over
2 equally to that over I'e.
Setting aside the details until the next section, we shall let Jh denote the solution of
S+D)g=h over Q, heECQ,R"), (3.9a)
Eg=0 over T'e, (39v)

and let Mo denote the solution of

(S+D)g=0 over Q, (3.10a)
Eg=a over I'é, a€C('¢,RM). (3.10b)
Then the solution g of
S+D)g=h over Q, (3.11a)
Eg=a over I'e, (3.11b)

for given h € C(Q*,R") and o € C(I"¢,R") is given by the representation
g=Jh + Ma. (3.12)
If « € C(I'¢,R") and k € C(Q*,R™), then Ma and Jh are defined over Q* in the sense of formula
209.

We next construct a map

G:C(I'e,RM) X C(2F,R™) X C(T'¢,R™) - C(Q+,R") X C(T'¢,R"),

(3.13)
:(6,8,0) > (h,B)
using the rule
h=g-J(cLg+D g +B(g,g)) - Mo — Mb over Q*
B=a—RIJ(cL +D)g — RIJB(g,g) — RIMa — RIM§  over T€.
The map G has three properties which are important for our purpose. The first is:

If h =0, then (3.14)
Eg=a+6 over I'¢ (3.14a)

Ig=1J(cL +D)g + 1JB(g,g) + IMa + IM5  over I'e. (3.14b)
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The second is:
If 8 =0, then « = RIJ(cL +D)g + RIJB(g,g) + RIMa + RIM5  over I'C. (3.15)
The third is:
G(0,0,0) = (0,0). (3.16)

A direct consequence of 3.14 and 3.15 is that the implicit relation
. G(®,8,0) =(0,0)
implies that
g=J(cLg +Dg +B(gg)) + Mo + M5  over QF, (3.17a)
Eg=RIg+8& over I'’. (3.17b)

If each term in the right side of 3.17a admits the application of (S +D), then applying (S + D)
shows that

Sg=cLg +B(g,g) over 2.

IV. STEADY-STATE SOLUTIONS

In the previous section, we have replaced the problem of finding a solution g of 3.8 with that of
finding a solution (g, &) of

G(,8,0)= G(O‘, 0,0) = (0, 0).

We shall now fix § € C(I"¢,R") as a parameter and treat g € C(Q,R") and a € C(T'¢,R"™) as
independent variables. Letting

(r,8) = G(5,8,0), (4.1)
we shall define the map
Fs :C(QY,R")X C(I'e,R") » F(Q*,R") X F(I'¢,R") : (g, ) > (g —k,a—7), 4.2)
where (k,7v) is the solution of

k—J(cLk +Dk)=h + My over
“4.3)
¥y—RIJ(cL +D)k =8 + RIMk  over I'é.

We shall then show that for each deformation parameter § there is a closed, spherical neighborhood
of g = 0 and a = 0 of radius r* = r*(8) over which E is a contraction map (with contraction constant
#(8)) and that Fy displaces the center (0,0) by less than (1 —p)r*. This is sufficient to show that Fj
has a (unique) fixed point (g,a). It then follows from the construction of Fj that G(5,g,a) = (0,0), so
that g is a solution of 3.17. If g€ CY{(Q2,R") then g is a solutlon of 3.8. If 6 has the form 3.5¢c, then

=cl + g is a steady-state solution of 3.1.

G3ITITSSYIONN



8 HOWARD E. CONNER
V. INVERSION OF (S+D)
In this section, we shall develop the solution g of (see 2.5, 2.7, and 2.8)
S+D)g=h over Q, h € C(Qt,R). (5.1a)
Eg=q over I'¢, o € C(T"¢,R"). (5.1b)
To accomplish this purpose, we shall restrict the class of admissible flow regions £2.

Assumption 1. There is a Cl-function ¢ with domain D(y) containing 2 such that Q and T are
determined by ¢: :

Q={xeDW): ¥(x) <0}, (5.22)
['={xE€D): y(x) =0}, (5.2b)
tv=al cy=acl, ca<e, (5.2¢)
(W) #0, x€T,r=>1. (5.2d)

The unit exterior vector n along I" for a flow region Q satisfying 5.2 is given in the form n = l(th/)I_1
(vy) over I
The first problem is to find a representation for the solution g of
S$+D)g=0 over Q, (5.3a)
Eg=a over ', a€C(I'¢,R"). (5.3b)
Corresponding to each velocity type v¥, we assign to each x in  a unique x¥ in I'¢(k) by
choosing x¥(x) to be the first intersection with I'¢ of the directed line through x in the direction k).
To be more precise, for each k, 1 < k < n, and each x € §, let & be the natural parameterization of
the characteristic line C¥(x) through x associated with the direction vk:
Ck(x)={yeR3:y=x+ sk, s€eR}, (5.43)

&k : R X § - R3 is the solution of (5.4b)
d ok _ =
d—tx(t)—v , x(0)=x,t€ER, xE.

Using the parametrization ®* of C¥, we define the first hitting time 7% of C¥ with I"¢(k) and the
hitting place x.

k:Q->R,.:x>1k(x), x€Q, (5.52)
*(x)=min{s>0:x~svk €T}, 1<k<n
Xk: Q->TeE):x>x*k(x), x€Q, (5.5b)

xk(x) = @k(—7*k(x),x), 1<k<n.



NRL REPORT 7410 9

The following properties are easily verified. For 1 <k <n,

7k and x* are continuous over U T. (5.5a)
*(x)=0, x €Trek) v (k). (5.5b)
xk(x)=x, xe€Tek)vrik). (5.5¢)

We want to extend the application of the free-flow operator S by interpreting S as a directional
derivative. So, we define the following:

B(k) = the collection of functions fin C(Q*,R) for which the directional derivative (5.7a)
v .1
G = lim 176+ %) = )

exists at each x € Q, 1 < k < n, and is continuous over £2.

~

D=1{feCc@*,R"):f ED(K), 1 <k <n}. | (5.7b)
S:D - C(Q,RY): f~>5f , (5.7¢)
G =Grfi)®), x€Q,1<k<n
The directional derivative S is an extension of § in the sense that
cl(Q,R") C D, (5.82)
Sf=Sf, feEC(Q,R"), over . (5.8b)
ProPOSITION 1. If the determining function  for S (see 5.2} is a continuous function, then
(@) 7k eDF)
®) Gxrk)=1o0ver @, 1<k<n
(©) fG*)ED®), f€CUQR), 1<k<n
@ Si(f(xk)=0 over Q, fECYQ,R), 1<k<n.
Since the proof of Proposition 1 is an elementary exercise, it has been omitted.
PROPOSITION 2. If the determining function  for Q is a C1-function over its domain, then
(@) 7* is a Cl-function and x* is a Cl-map over .
(b) Sk =vk + ¥ can be applied to 7% and f(x*), f €CHQ,R), 1<k<n.

Proof. For fixed x9 in £, the properties 5.3a, b, and ¢ imply the existence of a (smallest) sO for
which ¢ (x0 — s0vk) = 0. The functions 7% and x* evaluated at x0 are related to s0:

ATITSSYIIND



10 HOWARD E. CONNER
(@) 7%(x%) =50,
(b) xk(x0)=x0 - s0pk,
Setting F(x,s) = ¢ (®*(s, x)), we have (for sufficiently small s)

(@) F(x%,s50)=0.
oF ek k
©) 55 &9 =v*- (W (x-svk), x€Q.
Since
Iv¥l#0over T, 2—1: (x9,50) #0.

Using the classical implicit function theorem and the (real) analyticity of ®*, we find that

(a) there exists (i) a neighborhood N(x0) of x0 and (ii) a function s : N(x%) » R, s(x0) =
s0, for which F(x,s(x)) = ¢ (s — s(x)v¥) = 0, x € N(x?), and

(b) s has the same order of differentiability as .
Using again the properties of ¥ (5.2) and the definition of 7%(5.5), we know that 7¥(x) = s(x) for
x € N(x9). Consequently, 7% has the same order of differentiability over £ as ¥. Since k@) =
®k(—7k(x),x), x* also has the same order of differentiability over § as .=

Using the results of Propositions 1 and 2, we define for each diagonal operator D (3.7) the linear

map

M:F(T'¢,R") > E(Q,R") : a - Ma, (5.9)

Ma)(x) = e—d"Tk(x)ak(J_ck(x)), xEQYK),1<k<n.

With the properties of 7 and X stated in 5.6 and the definition of M, 5.9, there is no difficulty in show-
ing that M maps a bounded continuous a over I'¢ into a bounded continuous Ma over *;

M:C(e,R") - C(Q*,RM). (5.10)
ProrosiTiON 3. Suppose a € C(T'€,R"). Then
() Ma€D.
() (S+D)Ma)(x)=0, x€EQ
(¢c) EMoao=a over T€.
PROPOSITION 4. Suppose a € C(T'¢,R") N C!1(T'¢,R"). Then
(@) Ma € CY(Q,R")

(b) (3" +DYMa) = (S +D)(Ma)  over S2.
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Since the verification of the results stated in Propositions 3 and 4 follows directly from 5.9, 5.10 and
the results of Propositions 1 and 2 as a routine exercise in the application of Sj and Si, they have been
omitted.

The next problem is to find a representation for the solution g of
S+D)g=h over Q, h€ C(Q*R") (5.11a)
Eg=0 over I'¢, (5.11b)
To accomplish this purpose, we méy use the properties of 7% and x¥ to define the linear operator
| J:C(Q,R") > F(QQ*,R"):h > Jh

ko) (5.12)

X
(R (x) = &9k ) f kS Rk (x) + svk)ds, x € Q*(k), 1<k<n.
0

We want to stress that (Jh)g(x) is defined as a weighted line integral of Az (s) (the weighting factor is
exp —di(7%(x) —s) over the directed segment from xk(x) to x in the direction v*. Using 5.6 and the
definition of J, 5.12, we find that J maps a bounded continuous 4 over §2 into a bounded continuous
Jh over %

J:C(QLR,) = C(Q*,R"). (5.13)
PROPOSITION 5. Suppose h € C(SL,R"). Then

(2) Jk€D

(b) (S+D)(Jk)=k over Q

(c) EJh=0 overI'é.
PROPOSITION 6. Suppose h € C(Q*,R") N CY(Q,R"). Then

(@) JneCl(Q,R")

() (S+D)Jn=(S+D)Jn over Q.

Proof. As previously emphasized, (Jh)(x) is defined as the evaluation of a line integral. Conse-
quently, in Proposition 5, a and b are simply restatements of the fact that the directional derivative of
an indefinite line integral in the direction tangent to the line results in a number equal to the integrand
evaluated at the point of differentiation on the line. The validity of Proposition 5c follows directly
from the definition of Jh (5.12).

Since 7¥ is a C1-function and x¥ is a C1-map when ¢ is a C!-function, the upper limit and the
integrand in the line integral which defined Jh are both C1. Therefore Jh is a C!-function. Both 7a
and b follow directly from this.m

We shall now define norms for the collections C(2*,R"), C(I"¢,R"), and C(I'!,R"). The classical
uniform norm of a bounded function f defined over a set 4 is denoted by |fl4.

ATITSSYTINN



12 HOWARD E. CONNER

N(g+ =max (filgrxy; 1 S<k<n). (5.142)

N(f), = max (lfklre(k); 1 <k<n). (5.14b)

N(f)ri = max (Ifklr,l.(k); 1<k<n) (5.14¢)
Since each collection C(Q*(k),R), C(T'¢(k),R), and C(F’ R), 1 <k < n, with its uniform norm is a

B-space, each collection C(2*,R"), C(I"¢,R™), and C(T'{,R") is a B -space; and so, any product combina-
tion of C(Q*,R"), C(I'¢,R"), and C(I'", R") with the appropriate sum norm is a B-space.

ProrosITION 7. Suppose o. € C(I'¢,R"). Then
IMakIQJ,(k) < Iak'rf—’(k)’ 1<k<n (5.15)

ProrosiTION 8. Suppose h € C(¢,R"). Then

1 —dy (¥
|(Jh)kln+(k) <Ek—<l —¢ %K Q+(k))|hk|9+(k), 1 <k<n. (5.16)

Using Propositions 7 and 8 and the definitions in 5.14 results in estimates for M and J:

NMo)o+ < N(a)re (5.172)

N(Jh) s < c(D, QN (h)qs (5.17b)

—dylrk
c(D, ) = max {i(l e In“(k)); 1<k < n}.

Since these inequalities are direct consequences of the definitions of M and J, a verification of Proposi-
tions 7 and 8 and 5.17 has been omitted.

The preceding analysis for S, M, and J can be easily modified for apphcatlon to the dual problem
of finding a solution g* of

(-S+D)g=h € C(Q,R"). (5.1%a)
Ig = a* € C(T',RM). (5.1*b)

The most significent change is to define the first hitting time 7%* of Ck with I"(k) and the associated
hitting place xk*.

¥ Q>Ryix > 7K (%), x € Q, ; (5.5%a)
**(x)=min{s>0:x +svk €T}, 1<k<n
Q- Tik) x> xK'x), x€Q, (5.5*b)

Xk (x) = okt (x),x), 1<k<n.
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Replacing 7 with 7* and X with x *, we can apply the preceding development to 5.1*. In particular, the
auxiliary operators M* and J* can be defined as follows:

M*:C(I',R") > C(Q*,R"): a > M*q, (5.9%)

t 3
M*a(x) = eTF ™ Py (xk*(x)),  x € QYK), 1 <k <n.

J*:C(L,R") > C(Q*,R") - h > J*h, (5.12%)
. ** (x)
(J*h)(x) = ¢ 97" ) f I e (xk*(x) - k) ds, xe€ Qtk), 1<k<n.
0

Since there are no further significent changes, those propositions for M*, J*, and §* = —S corresponding
to those for M, J, and S can be stated without verification.

PROPOSITION 3*. Suppose a € C(I'',R"). Then
(@) M*a €D
®) §*+D)(M*a)0 over
(c) IM*a=q over T UT!,
PROPOSITION 4*, Suppose o € C(I'}, R") N CY(I",R"). Then
(a) Ma€Cl(Q,R").
(b) (§* +D)(Ma) = (S* +D)(Mc), over .
PROPOSITION 5%. Suppose h € C(Q*,R"). Then
(@) J*h€D.
() (S*+D)J*R)=h, over Q.
(c) IJ*n =0, over T,
PROPOSITION 6*. Suppose h € C(Q*,R") N C1(Q,R"). Then
(@) J*n € Cl(Q,R").
(b) (§* +D)(J*h) = (S* + D)(J*h), over .
There are also estimates for M*a and J*h similar to those for Ma and Jh as stated in Propositions

7 and 8. We shall not state them; however, we will refer to them as Propositions 7* and 8* when we
need them.
It is also of interest to see how the associated structures stated in Propositions 3 through 6 and 3*

through 6* can be applied to the question of the uniqueness of the solutions g and g* of the dual prob-
lems 5.1 and 5.1*, '

aIT11SSYIIND
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PROPOSITION 9 (9%). Suppose the determining function y for S is a Cl function. If g(g*) €
CI(Q,R™) is a solution of 5.1 (5.1%) for h =0 and & = 0, then g(g*) = 0.

Proof. The proof is made only for § and not S* and, in fact, it is made for the weaker version

of 5.1 when S is replaced with S.
First, we choose an arbitrary fin Co(£2,R"). From Proposition 5*a, we know that J*f eb.

Therefore, we consider the expressions
(T Sker + gk SEC* ), 1<k<n.

Since §'k(J*f ) = Ji over { and since Sg h = 0 over , we integrate these expressxons over 2 and
apply the divergence theorem to obtain the expressions

f &xfic d =f (J*f i gx V¥ *n(x)dl, 1<k<n.
2 T
Decomposing the right side using ' = T'¢(k) U T(k) U T'*(k) yields
= , . k.
J; gkfde J;‘i(k) (J*f)klrx(k) gkl rik) 4 n(x) dar

vken(x)dl’, 1<k<n.

N rein &
,[—-e(k) "|r(k) k

The first term in the right side is equal to zero since f has compact support in . The second is equal
to zero since Eg = a = 0. Therefore,

re(k)

J gfid2=0, 1<k<n, f€ECyS,R").
Q

This is sufficient to conclude that gx =0 over ,1 <k <n.m
Before concluding this section we should like to point out that an analysis of the related problems

S+D)g—-N=h over ¢, ANER, (5.18a)

=RIg+§ over I'¢ (5.18b)
(s* +D)g’;‘ -N*=h, over 2, ANER, (5.19a)
Ig=REg+§ over I'f (5.19b)

is necessary for determining that S + D (S* + D) can be restricted to an appropriate domain Dgr(Dg*) ch
associated with the boundary restrictions 5.18b or 5.19b, so that it is the infinitesimal generator of a
CO-semigroup over the closure of Dr(Dg*). This semigroup is used in the approach to developing the
existence for all # > 0 of positive solutions of the time-dependent problem associated with 3.1. An
analysis of 5.18 and 5.19 will be given in a future report on time-dependent solutions.
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V1. PROPERTIES OF G

In this section, we shall develop those properties of G (3.11) which are used to solve the implicit
relation G(8,g,a) = (0,0). The map G is defined so that if

(h,8)=G(5,8,9), ©.1)
then

h=g-J(cLg +Dg +B(g,8)) ~Ma—M5  over Q*, (6.1a)

B=a—RI(L +D)g — RlJpg(g,g) —RIMa — RIMé  over T'¢. (6.1b)

PROPOSITION 10. If (i) 8, a € C(I'¢,R™); (ii) g € C(§2,R™), then the functions h and f defined
in 6.1 satisfy

@) hEC*,R")
() BEC(e,R)
(c) g—-he D.

Proof. There is no difficulty in showing that k = Lg + Dg + B(g,g) € C(Q,R") if g € C(Q,R™).
Since Mo and M8 € C(Q*,R") if a and & € C(I"¢,R") (5.10), and Jh € C(2*,R") if k € C(2,R")
(5.13), each term in the right side of 6.1a belongs to C(Q2*,R"). This verifies 6.1a.

Using the additional facts that (i) the impinging restriction If € C(I'!, R") if f € C(Q*,R") (2.82)
and (ii) Ra € C(T'¢,R") if @ € C(I'!, R™) (2.7), and repeating the preceding argument will show that
B € C(I'¢,R"). This verifies 6.1b. Finally, using the facts that (i) Max € D if o € C(I'¢,R") and
(ii) Jk € D if k € C(Q,R"), a second repetition of the same argument will show that (g—h) € D.m

For fixed & € C(I'¢,R™), we shall let G be the restriction of G to the §-plane.

Gs : C(Q*,R") X C(T'¢,R") - C(QL+,R") X C(I'¢,R") (6.2)

Gﬁ(g’ a) = G(s’g’a)'

VII. AUXILIARY ESTIMATES

In this section, we develop some estimates for the operators J(cL + D) and RIM which appear in
the definition of G (3.13). These estimates will be used in the construction of the auxiliary map Fj
“4.2).

Before making these estimates, some further restrictions on the linear collision operator L and on
the boundary scattering operator R must be introduced.

Referring to the definition of L, 3.6, we assume that the diagonal part of L (which is always non-
positive) is strictly negative. This restriction could also be achieved by imposing a suitable restriction
on the scattering law A.

ka <o, 1<k<n (7.1)

Referring to the definition of R and recalling that RI1is bounded over I'¢ reveals that any in-
crease in the magnitude of vk *n(x) ]"1 must be compensated for by the factor

AITIISSYTIINN



16 HOWARD E. CONNER
’
Z Tk (%).
7

Therefore, it is assumed that the product of these two factors is bounded. For a given flow region Q
and boundary scattering operator R, we define

6 = max {Z, rjk(x)lvk . n(x)l‘1 X EI‘e(k)}. (7.2a)

i
6R,Q)=max{0;:1 <k <nl (7.2b)
We are interested only in those flow regions £ and boundary scattering operators R for which
0(R,Q) < =, 50 that (7.3a)

NRae) , <OR,QN(),, « € C(T%,R™). (7.3b)

We shall now isolate similar damping factors which appear in the definitions of M and J. For a
given set of velocity states {vk }’1' and any (positive) diagonal operator D, we define the following:

Xy = max {Z' {v/ « n(x)l e_diri(X) x € Pe(’*’)} (7.42)
: .

X(D,Q) = max {X;:1 <k <n} (7.4b)

tr=max{l- e IkTFE)  y e Q+(k)} (7.4¢)

¢D,Q)=max (&1 <k<nl (7.4d)

We can easily develop the following bounds for X and §:
0D, <1 (7.5a)
0< XD, Q) < |#| d(®) (7.5b)

where

(i) #(x) is the number of impinging velocity types at x €

(ii) d(2) is the minimum diameter of 2.

Using the bounds stated in 7.5 and imposing the restriction 7.1, we make the desired estimate for
J(cL + D), for an appropriately chosen D. Referring to the diagonal part of L, 7.1, we shall henceforth
choose D to be

D:C(Q* R?) » C(Y*,R"): f—> Df
(7.6)
DNk = difk, de=-clkk, 1<k<n
Having chosen D as defined in 7.6, we simplify the notation by setting K = cL + D;

K:C(Q*,R") > C(QU*,R") . f > Kf = (cL +D)f. (7.7)
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PrROPOSITION 11. Suppose L satisfies 7.1 and D is as defined in 7.6. Then for any g in C(Q2*,R")
NUKg)o+ <ED,2) N(g)g+- (7.8)

Proof. We shall let h = Kg, so that

h =c Z L,-kgj, 1<k<n.

j#k
Since
L1=0,dg=c ) Ly;
J*k
and so
|y Im(k) <dN(g)e, 1<k<n. (7.9)
Using the definition of M (5.9), we have
l _ e—dk-rk(x)
| Ry ()l < A il gy X ETER), 1<k <n. (7.10)

Inserting 7.9 into the right side of 7.10 and using the definition of ¢ (7.4), we have
|nY ()] < (1 - 9™*®) N o+ SGN@) e X ETER), 1<k <n.

This is certainly sufficient to conclude that 7.8 is valid.=
Using the bounds stated in 7.5 and imposing the restriction 7.3, we shall make the desired estimate
for RIM.
PrROPOSITION 12. Assume 7.3 is satisfied. Then for any o € C(I'¢,R"),
NRIM a)re <OR,Q) XD, ) N(a)re. (7.11)
Proof. Using the definition of R (2.7) yields
!’ _1 .
|RIM ), (x)| < Z rik % - n()I™ vl - n) 1 (M a)j(x)l
i
x€ETek), 1<k<n

Therefore using 7.3 to estimate the right side, we have
4 -
|RIM ), (x)] <6; ) Iv7 o)l laM @) ), (7.12)
i

x€ETek), 1 <k<n

Using the definition of M (5.9) and the definition of X (7.4) results in

AITITSSYTIINN
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7

Z' [vi«nO (M a)l.(x)|<z' vl + n(x)l e—djfi(x)lla,-(xf(x)l
e (7.13)

<XiN(o) x €ETek), 1 <k <n.

re’
Using 7.13 to estimate the right side of 7.12, we have

|(RIM ), (x)] <0 Xz N(w) xETek), 1<k <n.

re’

This is sufficient to conclude that 7.11 is valid. m
If X is a B-space, we can denote the identity map on X by Ij:

Ig: X>X:x~->x. (7.14)
ProrosITION 13. If D is as defined in 7.6 and if L satisfies 7.1, then the equation
h=k~JKk over Q* (7.15)
has a unique solution k (= (Iz --JK)_1 h) in C(S2*,R™) for each h in C(QF,R™). Moreover,

N <A =3@, Q) N4 (7.16)

Since the verification of this result follows directly from the estimate 7.8 as a standard result in the
theory of bounded contraction operators, it has been omitted.

PROPOSITION 14. Suppose R and Q2 are such that 6 (R,Q2)X(D,2) < 1. Then the equation
B=7—-RIM, over I' (7.17)
has a unique solution ¥ (= (Ig —RIM)_1 B) in C(I'¢,R™) for each B in C(I'¢,R™). Moreover,
N, <A -0R,2XO, D) N@)_.- (7.18)

The verification of this result follows directly from the estimate 7.11 for the same reasons as stated in
the comment following 7.16.

VIII. .CONSTRUCTION OF F

Using the estimates developed in the preceding section, we shall proceed with the construction of
the auxiliary map Fy (4.2), which we shall restate in a form more suitable for our purpose. We
emphasize that D and K are henceforth as defined in 7.6 and 7.7.

We shall define the auxiliary linear map T

T:C(Q*,RM) X C(I'¢,R") - F(Q*,R") X F(['¢, R")
(8.1a)
1(k,7) = (b, B)
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h=k —JKk - My over QF
(8.1b)
8=7—-RIMy - RIJKk over I'e,

The mapping properties of R, I, L, D, M, and J which are stated in 2.7, 2.8, 3.6, 3.7, 5.10, and 5.13 are
sufficient to show that T maps a continuous pair (k,¥) into a continuous pair (k, §).

T:C(Q,R") X C(T¢,R") - C(Q*,R") X C(T'¢,RM). 82

To show that T has an inverse, we shall prepare some constructions for solving two special sub-
systems of 8.1b.

PROPOSITION 15. Suppose R and Q are such that 8 (R, Q) x(D, ) < 1. Then to each (h,B) in
C(Q*,R") X C('¢,R™) there corresponds a unique solution (k,v) in C(Q2*,R")} X C(I'¢,R"™) of the
system

h=k—-My over 2
8.3)
B=(Ug—RIM)y over I'C.
Moreover, k and Y are determined by
k=h+M(JIz-RIM)™Ig  over Q.
8.4

Y=g —RIM)"lﬁ over T'¢.
Proof. The second equation in 8.3 can be solved for v when g is given, using Proposition 14. So,
7 is given by the second expression in 8.4. Substituting this expression for 7 into the first equation of
8.3 determines that k is given by the first expression in 8.4.
PROPOSITION 16. Suppose that R and ) are such that for some A, 0 <A< 1,
OR, Q)< Al —E(D, D)) (8.5)
Then the equation
h=(y-JK)k —MRIk over Q* (8.6)
has a unique solution k(= (I —JK —MRI)_lh) for each h in C(X*,R").  Moreover,
N#)gs > (1 =N 5O, QINE) 4 @®.7)
Proof. Since 7.16 implies that
Nz ~TK)ge > (1 - § O, DINK) 838)

and since 5.15, 7.3b, and 8.5 imply that

8.9)

N(MRIk)n+ < O(R, Q)N(k)n+ <A(l —§'(D,Q))N(k)n+,

GITITSSYTIOND
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we have

N({q —JK ~MRIK) . > N(Ua = JK) k), ~NMRIK)

> (1- (1 - §O. NE) s

This establishes 8.7. It also implies that the equation of 8.6 has a unique solution k in C(Q*,R") for
each h in the range of (I —JK — MRI).

We shall now show that the range of (I3 —JK —MRI) is the same as the range of (I; —JK). Since
Proposition 13 implies that (I —JK) is invertible over C(2*,R™), the range of (I3 —JK) is all of
C(Q*,R™). If the range of (I —JK —MRI) is not all of C(2*,R™), then for each d, 0 < d < 1, there
exists a g in C(Q*,R™) such that

g is not in the range of (I —JK —MRI). (8.10a)
N(g)Q+ =1. (8.10b)
N(g—f)n+ > d, for all fin the range of (I —JK —MRI). (8.10¢)

(This is a property flrst formulated by F. Riesz. A proof can be found in Ref. 11, p. 218.) However,
setting h = (I — JK)~1 g and using

N(Ug=JK)h — (g —JK—MRIYh) ., < NMRIR) . <6R,Q)N(h)g,

<A1 -¢(D, Q))N(h)n,r < AN(lg —-JK) h)n+'
Therefore
N(g—(Id—JK—MRI)h)n+ < AN(g). (8.11)

If we first choose d, A < d < 1, and then use 8.10 to produce the associated g, we find that 8.10c and
8.11 contradict each other. Therefore, the range of (I; —JK —MRI) is the same as the range of
(Ig — JK), which is all of C(Q*,R").a

We could have easily made a proof for Proposition 16 using contraction theory; however, the
present proof seems better since it shows that the range of (I —JK —MRI) is the same as the range of
(4 — JK), whatever the latter.

With these results, we are prepared to construct the inversion of T.

PROPOSITION 17. Suppose that R and S are such that for some \, 0 <A <1,0R, Q)<
N1 —-¢(D, Q) and (R, Q) X(D,Q) < 1. Then the system 8.1b has a unique solution (k,7) in
C(Q*,R") X C(I'¢,R™) associated with each (h,f) in C(Q*,R") X C(I'¢,R™).

Proof. Since 8(R,2) X(D 0)<1, we can apply Proposmon 15 to solve the subsystem 8.3. We
shall denote this solution by (k,7). Then, setting K = k — k and ¥=17 - 7 and subtracting 8.3 from 8.1b,
we have reduced the original problem to that of finding a solution (k,7) of

JKk = (I; - JK)k — MY over Q,
(8.12)

RIJKk = (I3 —RIM)Y —RIJKk  over Te.
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Applying RI to the first equation in 8.12 and then subtracting the second, we find that
Y=RIk over I'c. (8.13)

Therefore, we have further reduced the problem to that of finding a solution of the first equation in
8.12 when 7 is given by 8.13:

JKk = (I -JK)k — MRIK  over Q*. (8.14)

Since 6 <A (1 — {), we can apply the result of Proposition 16 to obtain the unique solution k
of 8.14 which is associated with JK.

Therefore,
k=k+k over QF,
(8.15)
Y=RIK + (i —RIM)_lﬁ over I'¢,
k=h+m(;—RIM)"1g  over QF,
(8.16)
K=(y-JK-MRI)"VKK over O,
is the desired solution (k,¥) in C(Q*,R”) X C(I'¢,R"™) which is associated with (h,8). = .
Using Proposition 17, we shall define T—1:
T-1:C(Q*,R") X C(I'¢,R") > C(Q*,R") X C(I'¢,R")
(8.17)

:(h,8) > k,7),

where (k,7) is determined by 8.15 and 8.16.

IX. PROPERTIES OF Fj

Using G (6.2) and T—! (8.17), we shall simplify the expressions for the definition of Fg (4.1,
4.2, and 4.3) and also state an elementary mapping property:

Fs:Ig—T-1c Gs:C(Q*R") X C(I'e,R") - C(QL+,R™) X C(T'¢,R"). ©O.1)

In this section, we shall develop those properties of Fg which we will use to show the existence
of a (unique) fixed pair (g, a) for F5 when 8 is sufficiently small.
The first property is an estimate on how far Fj displaces the pair (0, 0).

ProposITION 18. Let 0 be as defined in 7.2, § as in 7.4, and \ as in 8.5. Set (k,Y) = F5(0,0).
Then

N#)gs = (@ —A)(’i‘—f(D,n)))‘l N@)p- 0:22)

N = (=N @, ) 0R, Q) NG) .- (9.2b)

AITITSSYIIND
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Proof. Using the same reasoning which developed 8.13, we conclude that v = RIk. Therefore,
9.2b is a direct consequence of the estimate 7.3a for R and the estimate 9.2a.

Setting (g,a) = (0,0) in the system 6.1 defining G5, we find that h = -M38 and § =—-RIMS. Since
(k,RIK) = T~1(h,B), (k,RIK) is determined by solving the equation

-M8 =k —JKk — MRIk  over .
The solvability of this equation was developed in Proposition 16. Applying 8.7 establishes the

validity of 9.2a. m
Another relevant property of Fy is the existence of a contraction constant over

B() = {(g,0) in C(Q*,R") X C(T¢,R"); N(g) 4 + N(@), <1}. 9.3)

As a means to developing such a constant, we first develop an auxiliary estimate on the magnitude
of JB(g.f).

PROPOSITION 19. Let ¢ and ¢ be as defined in 3.4 and 7.4. Then for every (g.k) in C(S2*,R™) X
C(T'¢,Rn)

2¢(D, Q2
NUB(& K)o < 2D N(g) N )
Proof. Using the properties of B (2.4), we have
\B@kyl < D7 B lgllknl +Zm: 1B/, ;! | +}; |B]11g,1K;1. ©.5)

Lm#j

For the first term T'(1) on the right side, we have

T(1) <{ 2 (; Lim = Bl )} N(®)gs NK) e

m#j

since 2 Z BI]m =Ljm (3.6). Since ¢ Z Ljm =dj (7.6 and L1 = 0) and ~2¢ Z B]]m =d;
Q& m#j ) m

d:
T(1) S N@ s NB)g - ©.6)

For the second term T(2), we have

T(2) <{(—Z B,!',,,) N@gs Ny

m

and,since ~2¢ y B/ = d;,
m
m
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d;
TQ) < 2 N g+ NK) s ©.7)

Similarily for the third term T(3), we have

dj
T(3) < 55 M@ V). ©.8)

Substituting 9.6, 9.7 and 9.8 into 9.5 results in

2d;
|B(&. k)| < == N(g)gs N(K)gs ©9.9)

Next, using the estimate 5.16 for J, the estimate 9.9, and the definition of {;, yields

L P 2%

(Bl k)] < =5 1BER)I < T N NE)os.

The estimate 9.4 is then a direct consequence of the definition of § (7.4).m
We want to represent (F5(g a) — F5(g,a)) in a form to which we can apply the estimates which
we have already developed. We shall let

(k,7) = Fs5(g,0) — F5(g,0) (9.102)
(h.B) = T(k,7). | (9.10b)
Using I; =T~ o T, we first express (k,7) in the form
kM =T"1o T8 a-a)- T o (Gs(ga) - Gs(g,0)),
so that
(h,6) = T(Z~£,a~a) - (Gs(&) — Gs(g, ).

Then writing out the systems defining 7 (8.1) and G5 (6.1,6.2), we find that

h=JB(g.g)—JB(g,8) over QF, (9.11a)
B=RI/B(g,g) — RI/B(g,g) over I'e, (9.11b)
Since
B(g.f—h)= B(s.f) — B(g, D),
we have

B(g.8)—B(g,8)=B(g.28—g) + B(g-8.8).

AFTITSSYTIONN
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Substituting this expression into 9.11, we have the desired expression for (4, §):
h=JB(g—g,8) +IB(g.2—-8) over Q. (9.12a)
B=RIIB(g—g,8) + RI/B(g,g—g) over I'C. (9.12b)
We have now prepared sufficient information to develop a contraction constant for Fg over B(r).

ProPOSITION 20. Let ¢ be as defined in 3.4, 0 asin 7.2, { as in 7.4, X\ as in 8.5 and B(r) as in
9.3. For any (g,a) and (g,@) in C(Q*,R") X C(I'¢,R"), let

(ks7) =Fa(§,(-1) —Fﬁ(g’a)'

(h,8) = T(k,7).

Then
2¢(D, Q2 _
N®) e <@ -0 -0, ZCD (v | N ) VG- 013)
1 %D, 9) _
NOL, SOR, Q) ~NA - @, DN = (N(@)gs + V(@) i) NE =8 s
(9.13b)

Proof. The estimate 9.13b will follow directly from the estimate 7.3 for R and the estimate 9.13a.
Since § = RIh (9.12), we know that v = RIk. Therefore k and k are related as in 8.6. Applying
the estimate 8.7, we have

N s > (1 =N =3O, Q) N(K) - (9.14)
Using the expression 9.12a for 4 and the estimate 9.4 for JB, we have

28D, Q)
c

N < (N(E =8+ N(@) e + N (& —8) 4 N (&) 4)-

Substituting this estimate into 9.14 and multiplying by ((1 —A)(1 — (D, )71, we have developed the
estimate 9.13a.

With (k,7) as defined in 9.10a, the estimates developed in Proposition 20 are sufficient for us to
assert that for any (g,a) and (g, o) in B(r):

-1 45D, _ _
(N + N < (=N 50, Q)) 1 —“Tl' (NE - &)+ +* N@-a),).
We shall let
a6, N = (1 -1 -t@, )7L (9.152)

ble,§, M) =a(§,N) “(Dc’ 2 (9.15b)
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Then, collecting and summarizing the main achievement of this section, we have shown that
if k0,70 = F5(0,0), then (N(k0 ) N(vo)re) <22, NE),- (9.16a)
if (k,7) is as defined in 9.10a, then for any (g, &) and (g, @) in B(r) (9.3)
(NE)gs + N, ) SBEEN T (NE=8)ge + N@=0),,), ©9.16b)
where a(¢,A) and b(c,§, A) are as defined in 9.15.
X. EXISTENCE OF STEADY-STATE SOLUTIONS
We shall now show that if kg (see 3.3)
kg =RI1 — E1 over I'¢, (10.1)

is sufficiently small over I'¢, then, subject to those restrictions on 6, X, and { which were used to de-
velop the estimates stated in 9.16, there exists a solution (g,a%) of F5(g,®) = (g, ®).

PrOPOSITION 21. Let ¢ be as defined in 3.4, 0 as in 7.2, and X and ¢ as in 7.4. Suppose
R, Q) <ANA~-¢D,Q)) for some A, 0 <A< 1 (10.2a)
ORIQ) XD, )< 1. (10.2b)

Let a($,\) and b(c,§,\) be as defined in 9.15 and define the positive numbers 0 and r* as

1
0 — s
P TEVEICARY! (1032)
e L. (10.3b)
2b(c, 8, N S
Then to each kg with N(kR) ., < 10 there corresponds a unique solution (g*,a*) in B(r*) of
Fs(g,0) =(g,0), 6 = ckp.
Moreover,
N@¥)_, < S{ =122, 10.4a
&) 8< s ) (10.40)
(g%, a™) is a continuous function of kg for N(kg )Pe <A, (10.4b)

reducing to (g*,a™*) = (0,0) when kg = 0.

Proof. With a(¢,2) and b(c, ¢, N) as defined in 9.15, we want to choose  and N(kg )re so that
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2ca(§,2) N(kR)
r

L <1-b(c,t,N)r

The parabola y = r — br? intersects the { y= O}— axis at » = 0 and » = 1/b and has the maximum value
of ¥ = 1/46 at r=1/2b. With r0 as defined in 10.4, we see that if N(KR) < 70 then the line y =
2ca(§,N) N(kR ). intersects the parabola y =r ~ br2 in the two points 0 < r1 <ry <1/b(c,§,N).
Therefore

2a(5,0) VKR )pe

r*

<1-b(t,N)r*

whenever N(k R) <0,
In the estlmates stated in 9.16, replacing r with r* as defined in 9.3 results in

if (h0,7%) = F5(0,0) and if N(kg) ., <7, then (10.52)
(NKO) o+t N(‘ro)re) <(1-b(c,t,Nr*)r*

if (k,7) is as defined in 9.10, then for any (g, &) and (g,a) in B(r*) (10.5b)
(N®) g4 + N ) < (B, 5,0 r*)r.

The estimates given in 10.5 show that F, , is a contraction mapping over B(r*) (with contraction
constant equal to b(c,§,A) 7*) uniformly with respect to kg with N("R)pe <70 and that Feyp displaces
(0,0) by a distance less than (1 — b(c,{,\) r*) r*

Applying the uniform-contraction, fixed- pomt theorem, we can conclude that Fe,,(g,0) = (g, 0)
has a unique solution (g*,a*) in B(r*).

Since Fy is continuous in &. the solution (¢*,0*) is continuous in kg over N(kg)pe < 70. The
estimate 10.4a follows from estimating 1/2b(c, ¢, A) and 10.4b follows from Proposition 18.

Since T—! exists, (g*,a*) = F5(g*, o*) implies that G5(g*,a*) = (0,0). As already discussed in
Section III (3.17), this implies that

g* = JKg* + JB(g*,g*) + Ma* + M(ckp) over Q. (10.62)
=RIg* + ckp  over Te. (10.6b)

Since each term of the right side of 10.6a is in D (5.7), we can apply the operator (S +D) (5.8). There-
fore g* is a (weak) solution of the system

(@) Sg=cLg+B(g,g) over Q.
(b) Eg=Rlg+ ckp over I'¢,
Consequently,
*=cl+4g* (10.7)

is a (weak) steady-state solution of
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Sq=B(q,q) over Q. (10.82)
Eq =Rlq over I, (10.8b)

Since N(g*)+ < ¢/6 (10.4), we also know that

%g 1<qg*< l()g 1 over QF (10.9)

(f<h over Q* is an abbreviation for f;,(x) < hg(x), x € Q*(k), 1 <k <n.)
Therefore formula 10.7, ¢ > 0, generates a one-parameter family of (weak) positive steady-state
solutions which can be used to order-bound initial datum:
To each fin C(Q*,R"™) there correspond two positive constants, ¢ < ¢, and two associated
steady-state solutions, ¢ = ¢l + g and ¢ = ¢l + g, for which

g<f<q over Q.

XI. COMMENTS

In this report, we have developed the existence of a one-parameter family of (weak) positive
steady-state solutions of 3.1. This family of solutions is represented in the form g = ¢l + g, ¢ > 0,
where g is a solution of

(a) (S+Dg)=Kg +B(g,g) over Q.
(b) Eg=Rig+ckp over I'¢,

The family of solutions exists provided that kg is sufficiently small and 10.2 is valid.

We should like to suggest three problems. The first is to investigate whether or not solutions exist
for all kg when 10.2 is valid.

The second problem is to determine whether g is uniformly different from zero throughout Q or
only near the boundary I". The estimate 10.4 for the magnitude of g suggests that ¢ is not very different
from cl, in the sense that B(g,g) = Sg should have a small magnitude. In particular, we would like to
have estimates on the magnitude of Sg over compact subsets of  and over closed neighborhoods of T'.

The third problem is to determine whether or not there exists a correspondence between the solu-
tions g of 11.1 and the solutions k of its linearization (at g = 0):

(S+D)k =Kk over Q1. (11.1a)
Ek =RIk + ckp  over I'e. (11.1b)
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